Genome-wide study of KNOX regulatory network reveals brassinosteroid catabolic genes important for shoot meristem function in rice.

نویسندگان

  • Katsutoshi Tsuda
  • Nori Kurata
  • Hajime Ohyanagi
  • Sarah Hake
چکیده

In flowering plants, knotted1-like homeobox (KNOX) transcription factors play crucial roles in establishment and maintenance of the shoot apical meristem (SAM), from which aerial organs such as leaves, stems, and flowers initiate. We report that a rice (Oryza sativa) KNOX gene Oryza sativa homeobox1 (OSH1) represses the brassinosteroid (BR) phytohormone pathway through activation of BR catabolism genes. Inducible overexpression of OSH1 caused BR insensitivity, whereas loss of function showed a BR-overproduction phenotype. Genome-wide identification of loci bound and regulated by OSH1 revealed hormonal and transcriptional regulation as the major function of OSH1. Among these targets, BR catabolism genes CYP734A2, CYP734A4, and CYP734A6 were rapidly upregulated by OSH1 induction. Furthermore, RNA interference knockdown plants of CYP734A genes arrested growth of the SAM and mimicked some osh1 phenotypes. Thus, we suggest that local control of BR levels by KNOX genes is a key regulatory step in SAM function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development.

YABBY and WUSCHEL-LIKE HOMEOBOX (WOX) genes have been shown to play important roles in lateral organ formation and meristem function. Here, we report the characterization of functional relationship between rice (Oryza sativa) YAB3 and WOX3 in rice leaf development. Rice YAB3 is closely related to maize (Zea mays) ZmYAB14 and Arabidopsis (Arabidopsis thaliana) FILAMENTOUS FLOWER (FIL), whereas r...

متن کامل

Positive autoregulation of a KNOX gene is essential for shoot apical meristem maintenance in rice.

Self-maintenance of the shoot apical meristem (SAM), from which aerial organs are formed throughout the life cycle, is crucial in plant development. Class I Knotted1-like homeobox (KNOX) genes restrict cell differentiation and play an indispensable role in maintaining the SAM. However, the mechanism that positively regulates their expression is unknown. Here, we show that expression of a rice (...

متن کامل

The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1.

KNOTTED1 (KN1)-like homeobox (KNOX) transcription factors are involved in the establishment and maintenance of plant meristems; however, few direct targets of KNOX proteins have been recognized. Using a combination of double mutant analysis and biochemistry, we found that in maize (Zea mays), KN1 negatively modulates the accumulation of gibberellin (GA) through the control of ga2ox1, which code...

متن کامل

ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis.

The shoot apical meristem comprises undifferentiated stem cells and their derivatives, which include founder cells for lateral organs such as leaves. Meristem maintenance and lateral organ specification are regulated in part by negative interactions between the myb domain transcription factor ASYMMETRIC LEAVES1, which is expressed in lateral organ primordia, and homeobox transcription factors w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 26 9  شماره 

صفحات  -

تاریخ انتشار 2014